Anisotropy makes it insufficiency to get the vertical velocity by the conventional hyperbolic approximation for short-spreads 各向異性的存在使得常規(guī)短排列雙曲線速度分析對(duì)于恢復(fù)垂直速度變得不充分。
The calculation of the position of the shocks for the domain decomposition of the hyperbolic approximation is discussed . it is the matching stable problem for the different schemes in the different domains with different mesh size . after tracing the position of the shocks, the artificial compression method are applied to eliminate the smearing effect and to raise the resolution of the schemes . in the boundaries of each regions, the universal connected matching stable schemes are inserted in so as to make the schemes between different regions matching stable each other . at last, some numerical examples are presented 討論在激波計(jì)算中的區(qū)域分解法,即在不同區(qū)域中應(yīng)用不同網(wǎng)格及格式的耦合穩(wěn)定性問(wèn)題.先定出激波位置,再在激波附近小范圍內(nèi),用低階格式及人工壓縮方法以消除彌散效應(yīng).在激波區(qū)域外,應(yīng)用高精度格式,減少了過(guò)超振蕩現(xiàn)象,提高了分辨率.在各區(qū)域交界應(yīng)用全能穩(wěn)定聯(lián)接格式,解決了格式的耦合穩(wěn)定問(wèn)題.最后舉出數(shù)值計(jì)算實(shí)例,計(jì)算結(jié)果與理論分析符合